3.376 \(\int \frac {\cos (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=192 \[ \frac {35 i \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{128 \sqrt {2} a^{5/2} d}-\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{128 a^3 d}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}} \]

[Out]

35/256*I*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)+35/192*I*cos(d*x+c
)/a^2/d/(a+I*a*tan(d*x+c))^(1/2)-35/128*I*cos(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)/a^3/d+1/6*I*cos(d*x+c)/d/(a+I*a*
tan(d*x+c))^(5/2)+7/48*I*cos(d*x+c)/a/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3502, 3490, 3489, 206} \[ -\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{128 a^3 d}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {35 i \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{128 \sqrt {2} a^{5/2} d}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((35*I)/128)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*a^(5/2)*d) + ((I/
6)*Cos[c + d*x])/(d*(a + I*a*Tan[c + d*x])^(5/2)) + (((7*I)/48)*Cos[c + d*x])/(a*d*(a + I*a*Tan[c + d*x])^(3/2
)) + (((35*I)/192)*Cos[c + d*x])/(a^2*d*Sqrt[a + I*a*Tan[c + d*x]]) - (((35*I)/128)*Cos[c + d*x]*Sqrt[a + I*a*
Tan[c + d*x]])/(a^3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3489

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*a)/(b*f), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 3490

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 \int \frac {\cos (c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{12 a}\\ &=\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {35 \int \frac {\cos (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{96 a^2}\\ &=\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {35 \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx}{128 a^3}\\ &=\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{128 a^3 d}+\frac {35 \int \frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{256 a^2}\\ &=\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{128 a^3 d}+\frac {(35 i) \operatorname {Subst}\left (\int \frac {1}{2-a x^2} \, dx,x,\frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}}\right )}{128 a^2 d}\\ &=\frac {35 i \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{128 \sqrt {2} a^{5/2} d}+\frac {i \cos (c+d x)}{6 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 i \cos (c+d x)}{48 a d (a+i a \tan (c+d x))^{3/2}}+\frac {35 i \cos (c+d x)}{192 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {35 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{128 a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.37, size = 143, normalized size = 0.74 \[ \frac {i \sec ^3(c+d x) \left (7 i \sin (2 (c+d x))+56 i \sin (4 (c+d x))-85 \cos (2 (c+d x))+40 \cos (4 (c+d x))-105 e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )-125\right )}{768 a^2 d (\tan (c+d x)-i)^2 \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/768)*Sec[c + d*x]^3*(-125 - 105*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I
)*(c + d*x))]] - 85*Cos[2*(c + d*x)] + 40*Cos[4*(c + d*x)] + (7*I)*Sin[2*(c + d*x)] + (56*I)*Sin[4*(c + d*x)])
)/(a^2*d*(-I + Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 289, normalized size = 1.51 \[ \frac {{\left (105 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (2240 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + 2240 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} + 2240 i\right )} e^{\left (-i \, d x - i \, c\right )}}{4096 \, a^{2} d}\right ) - 105 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-2240 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - 2240 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} + 2240 i\right )} e^{\left (-i \, d x - i \, c\right )}}{4096 \, a^{2} d}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-48 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 39 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 125 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 46 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 8 i\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{768 \, a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/768*(105*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log(1/4096*(sqrt(2)*sqrt(1/2)*(2240*I*a^2*d
*e^(2*I*d*x + 2*I*c) + 2240*I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) + 2240*I)*e^(-I*d*x -
 I*c)/(a^2*d)) - 105*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log(1/4096*(sqrt(2)*sqrt(1/2)*(-2
240*I*a^2*d*e^(2*I*d*x + 2*I*c) - 2240*I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) + 2240*I)*
e^(-I*d*x - I*c)/(a^2*d)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-48*I*e^(8*I*d*x + 8*I*c) + 39*I*e^(6*I
*d*x + 6*I*c) + 125*I*e^(4*I*d*x + 4*I*c) + 46*I*e^(2*I*d*x + 2*I*c) + 8*I))*e^(-6*I*d*x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/(I*a*tan(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 1.09, size = 373, normalized size = 1.94 \[ \frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (1024 i \left (\cos ^{7}\left (d x +c \right )\right )+1024 \sin \left (d x +c \right ) \left (\cos ^{6}\left (d x +c \right )\right )-320 i \left (\cos ^{5}\left (d x +c \right )\right )+105 i \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+192 \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )+105 i \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+56 i \left (\cos ^{3}\left (d x +c \right )\right )+105 \sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+280 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-420 i \cos \left (d x +c \right )\right )}{1536 d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

1/1536/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(1024*I*cos(d*x+c)^7+1024*sin(d*x+c)*cos(d*x+c)^6-320*
I*cos(d*x+c)^5+105*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*cos(d*x+c)*2^(1/2)+192*sin(d*x+c)*cos(d*x+c)^4+105*I*(-2*cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*2^(1/2))*2^(1/2)+56*I*cos(d*x+c)^3+105*2^(1/2)*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(I*
cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+280*cos(d*x+c)^2*sin(d*x+c)-
420*I*cos(d*x+c))/a^3

________________________________________________________________________________________

maxima [B]  time = 1.23, size = 2297, normalized size = 11.96 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-1/3072*((cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x
 + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(3/4)*((544*I*sqrt(2)*cos(6*d*x + 6*
c) + 544*sqrt(2)*sin(6*d*x + 6*c))*cos(3/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1
/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) - 544*(sqrt(2)*cos(6*d*x + 6*c) - I*sqrt(2)*sin(6*d*x +
6*c))*sin(3/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c),
cos(6*d*x + 6*c))) + 1)))*sqrt(a) + (cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(
sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*(((
-348*I*sqrt(2)*cos(6*d*x + 6*c) - 348*sqrt(2)*sin(6*d*x + 6*c))*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x +
6*c)))^2 + (-348*I*sqrt(2)*cos(6*d*x + 6*c) - 348*sqrt(2)*sin(6*d*x + 6*c))*sin(1/3*arctan2(sin(6*d*x + 6*c),
cos(6*d*x + 6*c)))^2 + (-696*I*sqrt(2)*cos(6*d*x + 6*c) - 696*sqrt(2)*sin(6*d*x + 6*c))*cos(1/3*arctan2(sin(6*
d*x + 6*c), cos(6*d*x + 6*c))) - 348*I*sqrt(2)*cos(6*d*x + 6*c) - 348*sqrt(2)*sin(6*d*x + 6*c))*cos(5/2*arctan
2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) +
 1)) + (-228*I*sqrt(2)*cos(6*d*x + 6*c) - 228*sqrt(2)*sin(6*d*x + 6*c) + 192*I*sqrt(2))*cos(1/2*arctan2(sin(1/
3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) + 3
48*((sqrt(2)*cos(6*d*x + 6*c) - I*sqrt(2)*sin(6*d*x + 6*c))*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)
))^2 + (sqrt(2)*cos(6*d*x + 6*c) - I*sqrt(2)*sin(6*d*x + 6*c))*sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6
*c)))^2 + 2*(sqrt(2)*cos(6*d*x + 6*c) - I*sqrt(2)*sin(6*d*x + 6*c))*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*
x + 6*c))) + sqrt(2)*cos(6*d*x + 6*c) - I*sqrt(2)*sin(6*d*x + 6*c))*sin(5/2*arctan2(sin(1/3*arctan2(sin(6*d*x
+ 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) + 12*(19*sqrt(2)*cos(6*
d*x + 6*c) - 19*I*sqrt(2)*sin(6*d*x + 6*c) - 16*sqrt(2))*sin(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos
(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)))*sqrt(a) + (210*sqrt(2)*arctan2((c
os(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2
 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x
 + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)), (cos(1/3*arctan2(sin(
6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan
2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x
+ 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) + 1) - 210*sqrt(2)*arctan2((cos(1/3*arcta
n2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3
*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos
(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)), (cos(1/3*arctan2(sin(6*d*x + 6*c)
, cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x
+ 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), co
s(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) - 1) - 105*I*sqrt(2)*log(sqrt(cos(1/3*arctan2(sin(6*d
*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(s
in(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)*cos(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))),
 cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1))^2 + sqrt(cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d
*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), c
os(6*d*x + 6*c))) + 1)*sin(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(s
in(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1))^2 + 2*(cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(
1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) +
1)^(1/4)*cos(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c
), cos(6*d*x + 6*c))) + 1)) + 1) + 105*I*sqrt(2)*log(sqrt(cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))
^2 + sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x +
6*c))) + 1)*cos(1/2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x +
6*c), cos(6*d*x + 6*c))) + 1))^2 + sqrt(cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arcta
n2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)*sin(1/
2*arctan2(sin(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x +
6*c))) + 1))^2 - 2*(cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c)))^2 + sin(1/3*arctan2(sin(6*d*x + 6*c),
 cos(6*d*x + 6*c)))^2 + 2*cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(
1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))), cos(1/3*arctan2(sin(6*d*x + 6*c), cos(6*d*x + 6*c))) + 1)) +
 1))*sqrt(a))/(a^3*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(cos(c + d*x)/(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos {\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(cos(c + d*x)/(I*a*(tan(c + d*x) - I))**(5/2), x)

________________________________________________________________________________________